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Abstract—Existing mining algorithms for frequent itemsets 
lack a mechanism that enables automatic parallelization, load 
balancing, data distribution, and fault tolerance on large 
clusters. As a solution to this problem, we design a two step 
algorithm method for mining of frequent itsemsets using the 
MapReduce programming model. To achieve minimum running 
time for the corresponding minimum support, FP growth 
algorithm is used. This paper incorporates the mining of 
frequent items using FP trees. Also three MapReduce jobs are 
implemented to complete the mining task. In the crucial third 
MapReduce job, the mappers independently decompose 
itemsets, the reducers perform combination operations. To 
optimize the mining process and to measure load balance across 
the cluster’s computing nodes FiDoop-HD, an extension of 
FiDoop is used, to speed up the mining performance for high-
dimensional data analysis. Extensive experiments using real-
world celestial spectral data demonstrate that our proposed 
solution is efficient and scalable. 

Index Terms—Frequent itemsets, minimum support,frequent 
items FP tree, Hadoop cluster, load balance, MapReduce. 

I. INTRODUCTION

Due to the excessive volumes of data generated everyday 
frequent itemsets mining (FIM) is a core problesm in 
association rule mining (ARM), sequence mining. Since FIM 
takes high computation and input-output intensity , FIM 
should be made much faster since it plays a significant role in 
mining. 
As existing algorithms running on a single machine suffer 
from performance deterioration. To address this issue, we 
investigate how to perform FIM using MapReduce—a widely 
adopted programming model for processing big datasets. In 
this paper distribution of large data across clusters to balance 
load is described thereby optimizing the performance of FIM. 
FIM process is categorized as two algorithms namely, Apriori 
and FP-growth schemes. Apriori is a classic algorithm using 
the generate-and-test process that generates a large number of 
candidate itemsets; Apriori has to repeatedly scan an entire 
database.To reducethe time required for scanning databases 
an approach involving FP-growth and FiDoop HD was 
proposed, which avoids generating candidate itemsets. Most 
previously developed FIM process iscategorized as two 
algorithmsnamely Apriori and FP-Growth schemes.priori is a 
classic algorithm using the generate and test process that , 
which avoids generating candidate itemsets. Most previously 
developed FIM algorithms were built upon the Apriori 

algorithm.Unfortunately, in Apriori-like FIM algorithms, 
each processor has to scan a database multiple times and to 
exchange an excessive number of candidate itemsets with 
other processors. Therefore, Apriori-like FIM solutions suffer 
potential problems of high I/O and synchronization 
overhead.The scalability problem has been addressed by the 
implementation of a handful of FP-growth and FiDoop-HD. 
Rather than considering Apriori ,we incorporate the FP tree in 
the design of our FIM technique. The basic idea of FP growth 
algorithm is to remove infrequent items through recursive 
elimination procedure at the same time deleting these 
infrequent transactions. This means they do not appear in the 
user specified minimum number of transactions. The four 
advantages of FP growth algorithm are : 1)only two passes 
over data set 2) compresses data set 3)no candidate 
generation 4) much faster than Apriori algorithm. 
More importantly, the existing algorithms lack a mechanism 
that enables automatic parallelization, load balancing, data 
distribution, and fault tolerance on large computing clusters. 
To solve the aforementioned open problems, we use a parallel 
FIM algorithm called FiDoopHD using the MapReduce 
program-ming model. Compared with the existing frequent 
items FP tree algorithm, FiDoopHD has distinctive features. 
In FiDoopHD, the mappers independently and concurrently 
decompose itemsets; the reducers perform combination 
operations. 

We use FiDoopHD on our in-house Hadoop cluster. We 
observe that data partitioning and distribution are critical 
issues in FiDoop, because itemsets with different lengths 
have various decomposition and construction costs. To 
optimize the performance of FiDoop, we used a new data 
partitioning method to well balance computing load among 
the cluster nodes; FiDoop-HD, an exten-sion of FiDoop, to 
meet the needs of high-dimensional data processing. 

The main contributions of this paper are summarized as 
follows. 

1) We made a complete overhaul to FP tree.
2) We used the frequent itemsets mining method

FiDoopHD using the MapReduce programming model.
3) We proposed FP growth algorithm for the first two

Mapper Reducer jobs(scan 1 & scan2) since the
running time of the FP Growth is much better with
respective to minimum support.
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4) We used FiDoopHD algorithm for the third Map-
Reduce job to improve performance for the high
dimensional datasets.

5) We conducted extensive experiments using a wide
range of synthetic and real-world datasets, and we show
that combination of FP growth and FiDoopHD
algorithms is efficient and scalable on Hadoop clusters.

II. PRELIMINARY

In this section, we first briefly review association rules. 
Then, we summarize the basic idea of the FP growth 
algorithm along with its core data structures. 
A. Association Rules

ARM provides a strategic resource for decision support by
extracting the most important frequent patterns that simulta-
neously occur in a large transaction database. A typical ARM 
application is market basket analysis. An association rule, for 
example, can be “if a customer buys X and Y, then 90% of 
them also buy Z.” In this example, 90% is the confidence of 
the rule. Apart from confidence, support is another measure 
of asso-ciation rules, each of which is an implication in the 

form of A⇒ B . Here, A and B are two itemsets, and A ∩ B 

=∅.The confidence of a rule A⇒ B is defined as a ratio 

between  support(A∪B)  and support(A).  Note  that,  an item-

set A has support s if s% of transactions contain the itemset. 

We denote s= support(A); the support of the rule A⇒B is 

support(A∪ B).The ultimate objective of ARM is to discover 

all rules that satisfy a user-specified minimum support and 
minimum confi-dence. The ARM process can be decomposed 
into two phases: 1) identifying all frequent itemsets whose 
support is greater than the minimum support and 2) forming 
conditional impli-cation rules among the frequent itemsets. 
The first phase is more challenging and complicated than the 
second one. 

B. FP Preprocessing
The following are the steps of FP Preprocessing:
1)In the first scan the frequent item sets are determined.
2)All the infrequent itemsets are deleted from the transaction
as they never be part of a frequent item set.
3)All the frequent item sets that are determined are arranged
in the descending order with respective to their frequency.
4)The above steps is performed since it optimizes the
execution rather than the frequent itemsets being arranged in
random or ascending order.

Table1 describes the idea of preprocessing. 

C. FP Tree
After all individually infrequent items have been deleted
from the transaction database, it is turned into an FP-tree ,
which is basically a prefix tree for the transactions That is,
each path represents a set of transactions that share the same
prefix, each node corresponds to one item.
In addition, all nodes referring to the same item are linked
together in a list, so that all transactions containing a specific
item can easily be found and counted by traversing this list
which can be accessed through a head element, that states the
total number of occurrences of the item in the database.
Figure 1 shows the FP-tree for the (reduced) database shown
in Table 1.The head elements of the item lists are shown to
the left of the vertical grey bar, the prefix tree to the right of
it. Figure 1 showes the fp-tree.

The FP tree concept is explained with an example 
below: 
The initial FP-tree is built from a main memory 
representation of the (preprocessed) transaction database as a 
simple list of integer array and the resultant list is sorted 
lexicographically, whereas this list is converted into an FP 

tree with intensive recursive procedure with depth k, the kth

item in each transaction is used to split the database into 
sections, one for each item. For each section a node of the 
FP-tree is created and labeled with the item corresponding to 
the section and in turn it is processed recursively, which is 
again split into subsections,. Finally a new layer of nodes 
(one per subsection) is created . 
Note that in doing so one has to take care that transactions 
that are only as long as the current recursion depth are 
handled appropriately. Since only one transaction is 
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processed at a time, only the FP-tree representation and one 
new transaction is in main memory. This usually saves space, 
because an FP-tree is often a much more compact 
representation of a transaction database. 
 
D. Projecting and Pruning FP Tree 
The core operation of the FP-growth algorithm is to compute 
an FP-tree of a projected database containing transactions 
with specific items. The FP-growth 
algorithm contains two different projection methods. Both the 
methods start processing from copying certain nodes of the 
FP tree which are identified by the very deepest level of the 
FP tree , thus in turn produces the shadow of the same .Now 
the copied nodes are then linked and detached from the 
original FP-tree, yielding an FP-tree of the projected 
database. 

 
Figure2 

Later on the deepest level of the original FP-tree, which 
corresponds to the item on which the projection was based, is 
removed, and the next higher level is processed in the same 
way. These two projection methods are mainly in the order in 
which they traverse and copy the nodes of the FP-tree. 
In the Figure3 , the red arrow represents the processing and 
blue arrow represents the projection FP-tree is the created 
projection. Below figure 3 depicts the first method of 
projection of FP tree. 
In an outer loop, the lowest level of the FP-tree, that is, the 
list of nodes corresponding to the projection item, is traersed 
and for each node of this list, the parent pointers are followed 
to traverse all ancestors up to the root. Each encountered 
ancestor is copied and linked from its original(this is what 
the auxiliary pointer in each node, which was mentioned 
above, is needed for). 
During the copying, the parent pointers of the copies are set, 
the copies are also organized into level lists, and a sum of the 
counter values in each node is computed in head elements for 
these lists. 

 
Figure3:first stage of projection 

In a second traversal of the same branches, carried out in 
exactly the same manner where in which the copies are 
detached from their originals (the auxiliary pointers are set to 
null), which yields the independent projected FP-tree which 
is processed repeatedly by considering a prefix. 
The projection in the second phase traverses in an outer 
loop which is the deepest level of the FP tree. It also copies 
the parent of each node, not its higher ancestor, making it 
possible to find the ancestors in later steps.After projection 
, pruning is performed on the FP tree , which further 
remove some infrequent item sets. This pruning is achieved 
by traversing the levels of the Fp tree from top to bottom. 
 
E.  MapReduce Framework 
MapReduce is a promising scalable programming model for 
data-intensive applications and scientific analysis. A 
MapReduce program expresses a large distributed 
computation as a sequence of parallel operations on datasets 
of key/value pairs. A MapReduce computation has two 
phases, namely, the Map and Reduce phases. MapReduce 
greatly improves programmability by offering automatic data 
management, highly scalable, and transparent fault-tolerant 
processing. Also, MapReduce is running on clusters of cheap 
commodity servers—an increasingly attractive alternative to 
expensive computing platforms. The Mapper splits the input 
data into a large number of fragments, which are evenly 
distributed to Map tasks across the nodes of a cluster to 
process .Each Map task takes in a key-value pair and then 
generates a set of intermediate key-value pairs. After the 
MapReduce runtime system groups and sorts all the 
intermediate values associated with the same intermediate 
key, the runtime system delivers the intermediate values to 
Reduce tasks. Each Reduce task takes in all intermediate 
pairs associated with a particular key and emits a final set of 
key-value pairs. Both input pairs of Map and the output pairs 
of Reduce are managed by an underlying distributed file 
system called HDFS 

This picture would depict the process of map and reduce 
functionality more clearly 

 
Figure 4 

Figure4 will give a brief view about Mapper Reducer 
paradigm .Initially the transaction database is taken as input 
by the mapper after processing , again shuffle and sort will 
would categorize the data and give this as input to the reducer 
which would again process the data and produce the output. 
The intermediate phase is resulted by using some shuffle and 
sort algorithms. 
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This figure4 describes that data taken from the distribute file 
system is given as an input to the mapper which after 
computation generates the output which is in turn given as 
input to the reducer. When the dimensionality is huge or 
large then we consider distributed file system as single 
system may not support such a huge data. So when multiple 
systems are part of this distributed file system then many 
mappers would function or process the data from database. 
As part of this paper we suggest that the first two phases of 
scan would involve the two Map-Reducer programs running 
on the FP-growth algorithm. But the third map-reduce 
program would purely run on the Fidoop HD algorithm 
concepts. Since FidoopHD optimizes the third map reduce 
computations effectively. The below graphs depicts the 
performance of FP , FiDoop,FiDoopHD algorithm with 
respective to the data size. 
Similarly when considered the minimum support definitely 
there would be change in the performance of all the three 
algorithms i.e FP, FiDoop, FiDoopHD 

The same can be viewed by the below graphs. 

 
Graph1 

 
FiDoop,FiDoopHD algorithm with respect to the data size. 
Similarly when considered the minimum upport definitely 
there would be change in the performance of all the three 
algorithms :FP, FiDoop, FiDoopHD. 
 

III. OVERVIEW 
The  three Map Reducer programs are explained below : 
1. The first mapper program would mine the transaction 

database by removing infrequent sets.This output from 
the map is given to reducer as an input which would 
order the frequent itemsets in descending order and 
would build a FP tree. 

2. The second map programs takes the FP tree generated by 
the first reducer and would perform the projection 
operation by generating a projection FP tree. This output 
is taken by the second reducer program which would 
perform the pruning process and by removing again 
some infrequent itemsets.  

3. The above two phase 1) and 2) are performed using 
FP growth algorithms. 

4. The third map - reducer program takes the output from 
the second reducer , which would recursively processes 
the data and generates a minimum 2 Item sets using the 
FiDoopHD algorithm. 

 
The FP growth algorithm is as follows 
A.First Map - Reduce Algorithm 
Input: minsupport, DBi; 
Output: FP tree 
1. function MAP(key offset, values DBi) 

2. //T is the transaction in DBi 
3. for all T do 

4. items ←split each T; 
5. for all item in items  do 

1. count++ 
2. end for 

6. output( item, count); 
7. end for 

8. end function 

 
10. reduce input: (itemset,count ) 

11. function REDUCE(key item, values count) 

12. Items=sort(itemset,count)   /*sorts  the  items  in 

descending order*/ 
13. fptree_generation(items); /*generates FP tree */ 
14. end function 

 

B.Second Map-Reduce Algorithm 
Input: minsupport, DBi; 
Output: FP Tree after Projection and Pruning 
1. function MAP(FP_Treei) 

2. //T is the deepest level node in FP Tree 

3. /* The below for loop would project the FP Tree */ 
4. for all (T)  do 

4. new_nodes=choose(T); 

5. detach(FP Tree,new_nodes) 

6. FP_Tree=create_shadow(new_nodes,FP_Tr ee) 

7. output(FP_Tree) 

8. end for 

9. end function 

14. function REDUCE(FP_Tree) 

15. FP_Tree=remove(FP_Tree,minsupport) 

16. List=create_list(FP_Tree); 
17. output(List) /*The output from this function is List */ 
end function 
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C.Third Map Reduce Algorithm 
 
Input: List, 
Output:-FP Tree 
1. function MAP(List) 
2. // M is the size of the List 
2. for all (k is from M to 2) do 
3. for all (k-itemset in List) do 
4. decompose(k-itemset,   k-1,   (k-1)-itemsets); 

/*Each k-itemset isonly decomposed into (k-1)-
itemsets */ 

5. (k-1)-file ← the decomposed (k-1)-itemsets 
6. union the original (k-1)-itemsets in (k-1)-file; 
2. for all (t-itemset in (k-1)-file) do 

3. t -FP-tree←t-FP-tree generation(local-FPtree,t- 

itemset); 
8. output(t, t-FP-tree); 
9. end for 

10. end for 
11. end for 
12. end function 
 
D.Algorithm 4 Generate k-itemsets: To Generate All k-
itemsets by Pruning the Original Database 
 
Input: minsupport, DBi; 
Output: k-itemsets; 
1. function MAP(key offset, values DBi) 
2. //T is the transaction in DBi 
3. for all (T) do 
4. items ←split each T; 
5. for all (item in items)  do 
6. if (item is not frequent)  then 
4. prune the item in the T; 
8. end if 
9. k-itemset ←(k, itemset) /*itemset is the set of frequent 

items after pruning, 
 

10. whose length is k */ 
10. output(k-itemset,1); 
 
11. end for 

12. end for 

13. end function 
 
14. function REDUCE(key k-itemset, values 1) 

15. sum=0; 
16. for all (k-itemset) do 

17. sum += 1; 
18. end for 

19. output(k,  k-itemset+sum);//sum is support of 

 
this itemset end 

function 
we pay particular attention to the third MapReduce job, 
which is a performance bottleneck of the FiDoop algorithm. 

IV. SUPPORTING  DETAILS 
A.  Load Balance 
The decompose() function of the third MapReduce job 
accomplishes the decomposition process. If the length of  an 
itemset is m, the time complexity of decomposing the item-

set is O(2
m

). Thus, the decomposition cost is exponentially 
proportional to the itemset’s length. In other words, when the 
itemset length is going up, the decomposition overhead wi. 
Wigives rise to poor load-balancing performance .We 
introduce the entropy measure as a load balancing metric. 
Load is perfectly balanced across all the nodes.If WB(D) 
equals to 0 (i.e., WB(D)= 0), decomposition load is 
concentrated on one node. 
All the other cases are represented by 0 < WB(D) < 1. We 
experimentally evaluate the load-balancing performance. 
B.  High- Dimensional Optimization 

The aforementioned analysis confirms that if the length of 
itemsets to be decomposed is large, the decomposition cost 
will exponentially increase. In this section, we conduct 
experiments to investigate the impact of dimensionality on 
FiDoop. We also compare FiDoop with a popular solution 
parallelization of FP-growth (Pfp) . We presents an 
optimization algorithm called FiDoop-HD for high-
dimensional data processing. 

When it comes to mining frequent itemsets, varying 
dimensionality leads to a wide range of item set lengths. Our 
algorithm needs to decompose each itemset generated by 
pruning infrequent items for each transaction.Graph 2 shows 
the impact of dimensionality on the processing time of the 
tested algorithms. We made use of the series of D1000W, 
which are described in detail (see Synthetic Dataset). In the 
group of experiments, the number of transactions is 10 000 
000 and the average transaction size is anywhere between 10 
and 50. 

Graph. 2(a) demonstrates that the running times of FiDoop 
and Pfp sharply go up when the number of dimensions 
increases. In other words, both approaches are heavily 
sensitive to the number of dimensions. When the number of 
dimensions is small, FiDoop is faster than Pfp thanks to the 
fact that FiDoop can avert building conditional pat-tern bases 
and conditional sub-FP trees for short patterns. Pfp has poor 
performance, because it has to recursively tra-verse 
conditional FP trees. Furthermore, in order to facilitate 
parallelism, Pfp groups frequent one-itemsets and distributes 
the data corresponding to these items to each computing 
node; such a grouping strategy is both time and space con-
suming. Nevertheless, when the dimensionality 
approximately reaches 30, FiDoop’s performance starts 
degrading. This is because the cost of decomposing a k-
itemset is very expen-sive (i.e., 2m, m is determined by the 
dimensionality of the dataset). The increasing value of the m 
exponentially enlarges the running time of FiDoop. To 
address this performance issue, we propose an optimization 
approach to boost the speed of processing high-dimensional 
data. 
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Graph 2: Effect of dimensionality on different algorithms 
(on four nodes). Comparison of (a) FiDoop and Pfp and 
(b) FiDoop-HD and.Pfp 
 

V. FIDOOP-HD 
FiDoop-HD decomposes the list of itemsets in a decreasing 
order of itemset length. After reading M-itemsets from a 
cache file, FiDoop-HD decomposesthe M-itemsets into a list 
of (M− 1)-itemsets. Note that, M is the maximal length of 
itemsets. Then, these itemsets combine original (M− 1)-
itemsets to be stored. 
 
Algorithm 5 FiDoop-HD-MiningMap: High-
DimensionalOptimization for Map() Function 
 
 
Input: k-file /*k-file(2≤k≤M) is used to store the 

frequent k-itemsets generated in the second 
MapReduce.*/ 

Output: (k-1)-Fp-tree 

1. function MAP(key k, values k-file) 

2. for all (k is from M to 2) do 

3. for all (k-itemset in k-file) do 
 
4. decompose(k-itemset, k-1, (k-1)-itemsets); /*Each k-

itemset isonly decomposed into (k-1)-itemsets */ 
 

5. (k-1)-file ← the decomposed (k-1)-itemsets union 

 the original (k-1)-itemsets in (k-1)-file;  
6. for all (t-itemset in (k-1)-file) do 
7. t  −  Fp  −  tree ←t-Fp-tree 
 generation(local-Fp-tree, 

 

 t-itemset); 
8. output(t, t-Fp-tree); 
9. end for 

10. end for 

11. end for 

12. endfunction 

 
decompose k-itemset into (k− 1)-itemsets rather than into 
two-itemsets.In case of multi-ple files stored on a data node, 
the node sequentially loads and processes the files. 

 
The cost of decomposing an m-itemset into (m− 1)-itemsets 

can be modeled as c m
m
−1

. Given a file storing all itemsets 
whose length is m, the decomposition cost of the file is 

C(ISm)×c
m

m
−1

, where C(ISm) is the count of ISm in the 
 
file. Hence, the time complexity of the entire process can be 

approximated as max(C(ISi))×(c
M

M
−1

+c
M

M
−
−
2

1+· · ·+c
2

3), 
which 
can be further written as max(C(ISi))×(M×(M+ 1)/2), 2 
<i≤M. 
 

It is essential and critical to address the I/O performance 
issues in FiDoop-HD due to the following reasons. First, 
itemsets decomposed in the previous stages have to be saved 
in new files for subsequent phases. Second, FiDoop-HD does 
inherently incorporate a load-balancing policy, because each 
node processes the files storing itemsets with an identical 
length. 
 

VI MINIMUM SUPPORT: 
Minimum support plays an important role in mining frequent 
itemsets. We increase minimum support thresholds from 
0.0001% to 0.0003% with an increment of 0.00005%, 
thereby evaluating the impact of minimum support on Pfp 
and our proposed algorithms containing three MapReduce 
jobs using both celestial spectral and synthetic dataset 
 
Graph 3(a)–(c) shows the execution times of the three algo-
rithms on 10- and 40-dimensional synthetic datasets and celestial 
spectral dataset, respectively. In this set of experi-ment, we 

increase the minsupport from 1×10
−4

 to 3×10
−4

 with an 

increment of 0.5×10
−4

. A small minimum support slows down 
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the performance of the evaluated algorithms. This is because an 
increasing number of items satisfy the small minimum support 
when the minsupport is decreased; it takes an increased amount 
of time to process the large number of items. We also observe 
from Graph. 3(a) that the proposed algorithms are superior to 
Pfp in processing the low-dimensional dataset. When it comes to 
the high-dimensional dataset [see Graph. 3(b) and (c)], FiDoop-
HD behaves optimally and FiDoop shows its downside. These 
performance trends are reasonable, because the decomposition 
cost of FiDoop will exponentially increase, which in turn 
gradually offsets the gain in mining capacity with the 
increase of the item-set length. It is evident from these 
experimental results that FiDoop-HD improves the 
performance of FiDoop in the case of high-dimensional 
datasets. This observation is consistent with those drawn 
from Graph. 3(d)–(f), which show the running time of the 
three stages of FiDoop, FiDoop-HD, and Pfp on celestial 
spectral dataset. Although Pfp is seemingly superior to 
FiDoop in running time when high-dimensional datasets are 
processed, Pfp’s space consumption and the shuffling cost in 
the parallel process are higher than those of our solution. As a 
result, FiDoop-HD’s performance is better than that of Pfp. 
Graph 3(d) and (e) reveals that the running time of the first 
and second MapReduce jobs in FiDoop and FiDoop-HD are 
insensitive to minimum support. The mappers in FiDoop and 
FiDoop-HD have to scan the entire dataset and the reducers 
combine the output produced by the mappers; a similar case 
applies for the first MapReduce job of Pfp [see Graph. 3(f)]. 
Interestingly, the running times the third MapReduce job of 
our algorithms and the second MapReduce job of Pfp sharply 
increase with the decreasing value of minimum support. 
A small minimum support gives rise to an increasing number 
of k-itemsets to be decomposed by the third MapReduce job. 
For the Pfp case, the time spent in grouping and processing 
FP-tree goes up as the number of k-itemsets increases. 

E. Speedup
We evaluate the speedup performance of Pfp, FiDoop, and

FiDoop-HD by increasing the number of data nodes in the 
test Hadoop cluster from 4 to 16 with an increment of 2. The 
celestial spectral dataset is applied to drive the speedup 
analysis of the three algorithms. 

Th results illustrated in Graph4 show that the speedups of 
the three algorithms scale linearly when the number of data 
nodes increases from 4 to 14. When the num-ber of data 
nodes is further increased from 14 to 16, the speedup 
improvement marginally slows down. Such a speedup trend 
can be attributed to the fact that increasing the num-ber of 
data nodes under a fixed input data size inevitably: 1) reduces 
the amount of itemsets being handled by each node and 2) 
increases communication overhead between mappers and 
reducers. 

Graph 3. Effect of minimum support on (a) 10 dimensions, 
(b) 40 dimensions, (c) celestial spectral dataset, (d) three
stages of FiDoop, (e) three stages of FiDoop-HD, and (f)
three stages of Pfp.

There is a slowdown in speedup improvement and the rea-
son is twofold. First, each node has to load input itemsets 
from the HDFS; such input load has more noticeable impacts 
on FiDoop-HD than on FiDoop. 

Graph 4:Speedup performance 

D. Scalability
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In this group of experiments, we evaluate the scalability of 
FiDoop when the size of input dataset grows dramatically. 
Graph 5 shows the running time of FiDoop and FiDoop-HD 
when we scale up and process the dimensionality of the series 
of D1000W. 

 

 
Graph 5: Scalability of FiDoop and FiDoop-HD when the size of 

input dataset increases. The number of dimensions is set to 10 
 

Graph 5 clearly reveals that the overall execution time of 
FiDoop and FiDoop-HD goes up when the input data size is 
sharply enlarged. 
 
Graph 5 shows that when the dimension is rel-atively high, 
FiDoop-HD is superior to FiDoop in terms of execution time; 
More importantly, FiDoop-HD optimizes the performance of 
FiDoop for processing high-dimensional data; FiDoop-HD is 
superior to FiDoop when itemsets to be decomposed are 
large. Pfp is seemingly better than FiDoop when high-
dimensional datasets are processed. 
 
 
 
 

CONCLUSION 
To solve the scalability and load balancing,fault tolerence 

challenges in the existing mining algorithms, we described a 
two step algorithm method for mining of frequent item set 
using the Map-Reduce model.Which contain two methods for 
efficiently projecting FP-tree with the help of fp growth 
algorithm. Fpgrowth seamlessly integrates first two 
MapReduce jobs and FiDoop-HD performs the complex third 
mapreduce job to accomplish miningof frequent itemsets 
because the third MapReduce job plays an important role in 
mining frequent items; its mappers independently decompose 
item-sets whereas its reducers construct them into small data 
sets. 

We designed and implemented FiDoop-HD to efficiently 
handle high-dimensional data processing. FiDoop-HD 
decomposes the M-itemsets into a list of (M− 1)-itemsets, 
which are further decomposed into (M − 2)-itemsets to be 
unioned into the original (M − 2)-itemsets. This procedure is 
repeatedly carried out until the entire decomposition process 
is accomplished. 
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