
A Two way Algorithm Method for Mining of
Frequent Itemsets Using MapReduce

B Revathi Lavanya MIAENG N Sameera J.Malathi
Assistant Professor Assistant Professor Assistant Professor

CVR College of Engineering Sir CRR collegeof Engineering Sir CRR college of Engineering

Abstract—Existing mining algorithms for frequent itemsets
lack a mechanism that enables automatic parallelization, load
balancing, data distribution, and fault tolerance on large
clusters. As a solution to this problem, we design a two step
algorithm method for mining of frequent itsemsets using the
MapReduce programming model. To achieve minimum running
time for the corresponding minimum support, FP growth
algorithm is used. This paper incorporates the mining of
frequent items using FP trees. Also three MapReduce jobs are
implemented to complete the mining task. In the crucial third
MapReduce job, the mappers independently decompose
itemsets, the reducers perform combination operations. To
optimize the mining process and to measure load balance across
the cluster’s computing nodes FiDoop-HD, an extension of
FiDoop is used, to speed up the mining performance for high-
dimensional data analysis. Extensive experiments using real-
world celestial spectral data demonstrate that our proposed
solution is efficient and scalable.

Index Terms—Frequent itemsets, minimum support,frequent
items FP tree, Hadoop cluster, load balance, MapReduce.

I. INTRODUCTION

Due to the excessive volumes of data generated everyday
frequent itemsets mining (FIM) is a core problesm in
association rule mining (ARM), sequence mining. Since FIM
takes high computation and input-output intensity , FIM
should be made much faster since it plays a significant role in
mining.
As existing algorithms running on a single machine suffer
from performance deterioration. To address this issue, we
investigate how to perform FIM using MapReduce—a widely
adopted programming model for processing big datasets. In
this paper distribution of large data across clusters to balance
load is described thereby optimizing the performance of FIM.
FIM process is categorized as two algorithms namely, Apriori
and FP-growth schemes. Apriori is a classic algorithm using
the generate-and-test process that generates a large number of
candidate itemsets; Apriori has to repeatedly scan an entire
database.To reducethe time required for scanning databases
an approach involving FP-growth and FiDoop HD was
proposed, which avoids generating candidate itemsets. Most
previously developed FIM process iscategorized as two
algorithmsnamely Apriori and FP-Growth schemes.priori is a
classic algorithm using the generate and test process that ,
which avoids generating candidate itemsets. Most previously
developed FIM algorithms were built upon the Apriori

algorithm.Unfortunately, in Apriori-like FIM algorithms,
each processor has to scan a database multiple times and to
exchange an excessive number of candidate itemsets with
other processors. Therefore, Apriori-like FIM solutions suffer
potential problems of high I/O and synchronization
overhead.The scalability problem has been addressed by the
implementation of a handful of FP-growth and FiDoop-HD.
Rather than considering Apriori ,we incorporate the FP tree in
the design of our FIM technique. The basic idea of FP growth
algorithm is to remove infrequent items through recursive
elimination procedure at the same time deleting these
infrequent transactions. This means they do not appear in the
user specified minimum number of transactions. The four
advantages of FP growth algorithm are : 1)only two passes
over data set 2) compresses data set 3)no candidate
generation 4) much faster than Apriori algorithm.
More importantly, the existing algorithms lack a mechanism
that enables automatic parallelization, load balancing, data
distribution, and fault tolerance on large computing clusters.
To solve the aforementioned open problems, we use a parallel
FIM algorithm called FiDoopHD using the MapReduce
program-ming model. Compared with the existing frequent
items FP tree algorithm, FiDoopHD has distinctive features.
In FiDoopHD, the mappers independently and concurrently
decompose itemsets; the reducers perform combination
operations.

We use FiDoopHD on our in-house Hadoop cluster. We
observe that data partitioning and distribution are critical
issues in FiDoop, because itemsets with different lengths
have various decomposition and construction costs. To
optimize the performance of FiDoop, we used a new data
partitioning method to well balance computing load among
the cluster nodes; FiDoop-HD, an exten-sion of FiDoop, to
meet the needs of high-dimensional data processing.

The main contributions of this paper are summarized as
follows.

1) We made a complete overhaul to FP tree.
2) We used the frequent itemsets mining method

FiDoopHD using the MapReduce programming model.
3) We proposed FP growth algorithm for the first two

Mapper Reducer jobs(scan 1 & scan2) since the
running time of the FP Growth is much better with
respective to minimum support.

B Revathi Lavanya MIAENG et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2491-2498

www.ijcsit.com 2491

4) We used FiDoopHD algorithm for the third Map-
Reduce job to improve performance for the high
dimensional datasets.

5) We conducted extensive experiments using a wide
range of synthetic and real-world datasets, and we show
that combination of FP growth and FiDoopHD
algorithms is efficient and scalable on Hadoop clusters.

II. PRELIMINARY

In this section, we first briefly review association rules.
Then, we summarize the basic idea of the FP growth
algorithm along with its core data structures.
A. Association Rules

ARM provides a strategic resource for decision support by
extracting the most important frequent patterns that simulta-
neously occur in a large transaction database. A typical ARM
application is market basket analysis. An association rule, for
example, can be “if a customer buys X and Y, then 90% of
them also buy Z.” In this example, 90% is the confidence of
the rule. Apart from confidence, support is another measure
of asso-ciation rules, each of which is an implication in the

form of A⇒ B . Here, A and B are two itemsets, and A ∩ B

=∅.The confidence of a rule A⇒ B is defined as a ratio

between support(A∪B) and support(A). Note that, an item-

set A has support s if s% of transactions contain the itemset.

We denote s= support(A); the support of the rule A⇒B is

support(A∪ B).The ultimate objective of ARM is to discover

all rules that satisfy a user-specified minimum support and
minimum confi-dence. The ARM process can be decomposed
into two phases: 1) identifying all frequent itemsets whose
support is greater than the minimum support and 2) forming
conditional impli-cation rules among the frequent itemsets.
The first phase is more challenging and complicated than the
second one.

B. FP Preprocessing
The following are the steps of FP Preprocessing:
1)In the first scan the frequent item sets are determined.
2)All the infrequent itemsets are deleted from the transaction
as they never be part of a frequent item set.
3)All the frequent item sets that are determined are arranged
in the descending order with respective to their frequency.
4)The above steps is performed since it optimizes the
execution rather than the frequent itemsets being arranged in
random or ascending order.

Table1 describes the idea of preprocessing.

C. FP Tree
After all individually infrequent items have been deleted
from the transaction database, it is turned into an FP-tree ,
which is basically a prefix tree for the transactions That is,
each path represents a set of transactions that share the same
prefix, each node corresponds to one item.
In addition, all nodes referring to the same item are linked
together in a list, so that all transactions containing a specific
item can easily be found and counted by traversing this list
which can be accessed through a head element, that states the
total number of occurrences of the item in the database.
Figure 1 shows the FP-tree for the (reduced) database shown
in Table 1.The head elements of the item lists are shown to
the left of the vertical grey bar, the prefix tree to the right of
it. Figure 1 showes the fp-tree.

The FP tree concept is explained with an example
below:
The initial FP-tree is built from a main memory
representation of the (preprocessed) transaction database as a
simple list of integer array and the resultant list is sorted
lexicographically, whereas this list is converted into an FP

tree with intensive recursive procedure with depth k, the kth

item in each transaction is used to split the database into
sections, one for each item. For each section a node of the
FP-tree is created and labeled with the item corresponding to
the section and in turn it is processed recursively, which is
again split into subsections,. Finally a new layer of nodes
(one per subsection) is created .
Note that in doing so one has to take care that transactions
that are only as long as the current recursion depth are
handled appropriately. Since only one transaction is

B Revathi Lavanya MIAENG et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2491-2498

www.ijcsit.com 2492

processed at a time, only the FP-tree representation and one
new transaction is in main memory. This usually saves space,
because an FP-tree is often a much more compact
representation of a transaction database.

D. Projecting and Pruning FP Tree
The core operation of the FP-growth algorithm is to compute
an FP-tree of a projected database containing transactions
with specific items. The FP-growth
algorithm contains two different projection methods. Both the
methods start processing from copying certain nodes of the
FP tree which are identified by the very deepest level of the
FP tree , thus in turn produces the shadow of the same .Now
the copied nodes are then linked and detached from the
original FP-tree, yielding an FP-tree of the projected
database.

Figure2

Later on the deepest level of the original FP-tree, which
corresponds to the item on which the projection was based, is
removed, and the next higher level is processed in the same
way. These two projection methods are mainly in the order in
which they traverse and copy the nodes of the FP-tree.
In the Figure3 , the red arrow represents the processing and
blue arrow represents the projection FP-tree is the created
projection. Below figure 3 depicts the first method of
projection of FP tree.
In an outer loop, the lowest level of the FP-tree, that is, the
list of nodes corresponding to the projection item, is traersed
and for each node of this list, the parent pointers are followed
to traverse all ancestors up to the root. Each encountered
ancestor is copied and linked from its original(this is what
the auxiliary pointer in each node, which was mentioned
above, is needed for).
During the copying, the parent pointers of the copies are set,
the copies are also organized into level lists, and a sum of the
counter values in each node is computed in head elements for
these lists.

Figure3:first stage of projection

In a second traversal of the same branches, carried out in
exactly the same manner where in which the copies are
detached from their originals (the auxiliary pointers are set to
null), which yields the independent projected FP-tree which
is processed repeatedly by considering a prefix.
The projection in the second phase traverses in an outer
loop which is the deepest level of the FP tree. It also copies
the parent of each node, not its higher ancestor, making it
possible to find the ancestors in later steps.After projection
, pruning is performed on the FP tree , which further
remove some infrequent item sets. This pruning is achieved
by traversing the levels of the Fp tree from top to bottom.

E. MapReduce Framework
MapReduce is a promising scalable programming model for
data-intensive applications and scientific analysis. A
MapReduce program expresses a large distributed
computation as a sequence of parallel operations on datasets
of key/value pairs. A MapReduce computation has two
phases, namely, the Map and Reduce phases. MapReduce
greatly improves programmability by offering automatic data
management, highly scalable, and transparent fault-tolerant
processing. Also, MapReduce is running on clusters of cheap
commodity servers—an increasingly attractive alternative to
expensive computing platforms. The Mapper splits the input
data into a large number of fragments, which are evenly
distributed to Map tasks across the nodes of a cluster to
process .Each Map task takes in a key-value pair and then
generates a set of intermediate key-value pairs. After the
MapReduce runtime system groups and sorts all the
intermediate values associated with the same intermediate
key, the runtime system delivers the intermediate values to
Reduce tasks. Each Reduce task takes in all intermediate
pairs associated with a particular key and emits a final set of
key-value pairs. Both input pairs of Map and the output pairs
of Reduce are managed by an underlying distributed file
system called HDFS

This picture would depict the process of map and reduce
functionality more clearly

Figure 4

Figure4 will give a brief view about Mapper Reducer
paradigm .Initially the transaction database is taken as input
by the mapper after processing , again shuffle and sort will
would categorize the data and give this as input to the reducer
which would again process the data and produce the output.
The intermediate phase is resulted by using some shuffle and
sort algorithms.

B Revathi Lavanya MIAENG et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2491-2498

www.ijcsit.com 2493

This figure4 describes that data taken from the distribute file
system is given as an input to the mapper which after
computation generates the output which is in turn given as
input to the reducer. When the dimensionality is huge or
large then we consider distributed file system as single
system may not support such a huge data. So when multiple
systems are part of this distributed file system then many
mappers would function or process the data from database.
As part of this paper we suggest that the first two phases of
scan would involve the two Map-Reducer programs running
on the FP-growth algorithm. But the third map-reduce
program would purely run on the Fidoop HD algorithm
concepts. Since FidoopHD optimizes the third map reduce
computations effectively. The below graphs depicts the
performance of FP , FiDoop,FiDoopHD algorithm with
respective to the data size.
Similarly when considered the minimum support definitely
there would be change in the performance of all the three
algorithms i.e FP, FiDoop, FiDoopHD

The same can be viewed by the below graphs.

Graph1

FiDoop,FiDoopHD algorithm with respect to the data size.
Similarly when considered the minimum upport definitely
there would be change in the performance of all the three
algorithms :FP, FiDoop, FiDoopHD.

III. OVERVIEW
The three Map Reducer programs are explained below :
1. The first mapper program would mine the transaction

database by removing infrequent sets.This output from
the map is given to reducer as an input which would
order the frequent itemsets in descending order and
would build a FP tree.

2. The second map programs takes the FP tree generated by
the first reducer and would perform the projection
operation by generating a projection FP tree. This output
is taken by the second reducer program which would
perform the pruning process and by removing again
some infrequent itemsets.

3. The above two phase 1) and 2) are performed using
FP growth algorithms.

4. The third map - reducer program takes the output from
the second reducer , which would recursively processes
the data and generates a minimum 2 Item sets using the
FiDoopHD algorithm.

The FP growth algorithm is as follows
A.First Map - Reduce Algorithm
Input: minsupport, DBi;
Output: FP tree
1. function MAP(key offset, values DBi)

2. //T is the transaction in DBi
3. for all T do

4. items ←split each T;
5. for all item in items do

1. count++
2. end for

6. output(item, count);
7. end for

8. end function

10. reduce input: (itemset,count)

11. function REDUCE(key item, values count)

12. Items=sort(itemset,count) /*sorts the items in

descending order*/
13. fptree_generation(items); /*generates FP tree */
14. end function

B.Second Map-Reduce Algorithm
Input: minsupport, DBi;
Output: FP Tree after Projection and Pruning
1. function MAP(FP_Treei)

2. //T is the deepest level node in FP Tree

3. /* The below for loop would project the FP Tree */
4. for all (T) do

4. new_nodes=choose(T);

5. detach(FP Tree,new_nodes)

6. FP_Tree=create_shadow(new_nodes,FP_Tr ee)

7. output(FP_Tree)

8. end for

9. end function

14. function REDUCE(FP_Tree)

15. FP_Tree=remove(FP_Tree,minsupport)

16. List=create_list(FP_Tree);
17. output(List) /*The output from this function is List */
end function

B Revathi Lavanya MIAENG et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2491-2498

www.ijcsit.com 2494

C.Third Map Reduce Algorithm

Input: List,
Output:-FP Tree
1. function MAP(List)
2. // M is the size of the List
2. for all (k is from M to 2) do
3. for all (k-itemset in List) do
4. decompose(k-itemset, k-1, (k-1)-itemsets);

/*Each k-itemset isonly decomposed into (k-1)-
itemsets */

5. (k-1)-file ← the decomposed (k-1)-itemsets
6. union the original (k-1)-itemsets in (k-1)-file;
2. for all (t-itemset in (k-1)-file) do

3. t -FP-tree←t-FP-tree generation(local-FPtree,t-

itemset);
8. output(t, t-FP-tree);
9. end for

10. end for
11. end for
12. end function

D.Algorithm 4 Generate k-itemsets: To Generate All k-
itemsets by Pruning the Original Database

Input: minsupport, DBi;
Output: k-itemsets;
1. function MAP(key offset, values DBi)
2. //T is the transaction in DBi
3. for all (T) do
4. items ←split each T;
5. for all (item in items) do
6. if (item is not frequent) then
4. prune the item in the T;
8. end if
9. k-itemset ←(k, itemset) /*itemset is the set of frequent

items after pruning,

10. whose length is k */
10. output(k-itemset,1);

11. end for

12. end for

13. end function

14. function REDUCE(key k-itemset, values 1)

15. sum=0;
16. for all (k-itemset) do

17. sum += 1;
18. end for

19. output(k, k-itemset+sum);//sum is support of

this itemset end

function
we pay particular attention to the third MapReduce job,
which is a performance bottleneck of the FiDoop algorithm.

IV. SUPPORTING DETAILS
A. Load Balance
The decompose() function of the third MapReduce job
accomplishes the decomposition process. If the length of an
itemset is m, the time complexity of decomposing the item-

set is O(2
m

). Thus, the decomposition cost is exponentially
proportional to the itemset’s length. In other words, when the
itemset length is going up, the decomposition overhead wi.
Wigives rise to poor load-balancing performance .We
introduce the entropy measure as a load balancing metric.
Load is perfectly balanced across all the nodes.If WB(D)
equals to 0 (i.e., WB(D)= 0), decomposition load is
concentrated on one node.
All the other cases are represented by 0 < WB(D) < 1. We
experimentally evaluate the load-balancing performance.
B. High- Dimensional Optimization

The aforementioned analysis confirms that if the length of
itemsets to be decomposed is large, the decomposition cost
will exponentially increase. In this section, we conduct
experiments to investigate the impact of dimensionality on
FiDoop. We also compare FiDoop with a popular solution
parallelization of FP-growth (Pfp) . We presents an
optimization algorithm called FiDoop-HD for high-
dimensional data processing.

When it comes to mining frequent itemsets, varying
dimensionality leads to a wide range of item set lengths. Our
algorithm needs to decompose each itemset generated by
pruning infrequent items for each transaction.Graph 2 shows
the impact of dimensionality on the processing time of the
tested algorithms. We made use of the series of D1000W,
which are described in detail (see Synthetic Dataset). In the
group of experiments, the number of transactions is 10 000
000 and the average transaction size is anywhere between 10
and 50.

Graph. 2(a) demonstrates that the running times of FiDoop
and Pfp sharply go up when the number of dimensions
increases. In other words, both approaches are heavily
sensitive to the number of dimensions. When the number of
dimensions is small, FiDoop is faster than Pfp thanks to the
fact that FiDoop can avert building conditional pat-tern bases
and conditional sub-FP trees for short patterns. Pfp has poor
performance, because it has to recursively tra-verse
conditional FP trees. Furthermore, in order to facilitate
parallelism, Pfp groups frequent one-itemsets and distributes
the data corresponding to these items to each computing
node; such a grouping strategy is both time and space con-
suming. Nevertheless, when the dimensionality
approximately reaches 30, FiDoop’s performance starts
degrading. This is because the cost of decomposing a k-
itemset is very expen-sive (i.e., 2m, m is determined by the
dimensionality of the dataset). The increasing value of the m
exponentially enlarges the running time of FiDoop. To
address this performance issue, we propose an optimization
approach to boost the speed of processing high-dimensional
data.

B Revathi Lavanya MIAENG et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2491-2498

www.ijcsit.com 2495

Graph 2: Effect of dimensionality on different algorithms
(on four nodes). Comparison of (a) FiDoop and Pfp and
(b) FiDoop-HD and.Pfp

V. FIDOOP-HD
FiDoop-HD decomposes the list of itemsets in a decreasing
order of itemset length. After reading M-itemsets from a
cache file, FiDoop-HD decomposesthe M-itemsets into a list
of (M− 1)-itemsets. Note that, M is the maximal length of
itemsets. Then, these itemsets combine original (M− 1)-
itemsets to be stored.

Algorithm 5 FiDoop-HD-MiningMap: High-
DimensionalOptimization for Map() Function

Input: k-file /*k-file(2≤k≤M) is used to store the

frequent k-itemsets generated in the second
MapReduce.*/

Output: (k-1)-Fp-tree

1. function MAP(key k, values k-file)

2. for all (k is from M to 2) do

3. for all (k-itemset in k-file) do

4. decompose(k-itemset, k-1, (k-1)-itemsets); /*Each k-

itemset isonly decomposed into (k-1)-itemsets */

5. (k-1)-file ← the decomposed (k-1)-itemsets union

 the original (k-1)-itemsets in (k-1)-file;
6. for all (t-itemset in (k-1)-file) do
7. t − Fp − tree ←t-Fp-tree
 generation(local-Fp-tree,

 t-itemset);
8. output(t, t-Fp-tree);
9. end for

10. end for

11. end for

12. endfunction

decompose k-itemset into (k− 1)-itemsets rather than into
two-itemsets.In case of multi-ple files stored on a data node,
the node sequentially loads and processes the files.

The cost of decomposing an m-itemset into (m− 1)-itemsets

can be modeled as c m
m
−1

. Given a file storing all itemsets
whose length is m, the decomposition cost of the file is

C(ISm)×c
m

m
−1

, where C(ISm) is the count of ISm in the

file. Hence, the time complexity of the entire process can be

approximated as max(C(ISi))×(c
M

M
−1

+c
M

M
−
−
2

1+· · ·+c
2

3),
which
can be further written as max(C(ISi))×(M×(M+ 1)/2), 2
<i≤M.

It is essential and critical to address the I/O performance
issues in FiDoop-HD due to the following reasons. First,
itemsets decomposed in the previous stages have to be saved
in new files for subsequent phases. Second, FiDoop-HD does
inherently incorporate a load-balancing policy, because each
node processes the files storing itemsets with an identical
length.

VI MINIMUM SUPPORT:
Minimum support plays an important role in mining frequent
itemsets. We increase minimum support thresholds from
0.0001% to 0.0003% with an increment of 0.00005%,
thereby evaluating the impact of minimum support on Pfp
and our proposed algorithms containing three MapReduce
jobs using both celestial spectral and synthetic dataset

Graph 3(a)–(c) shows the execution times of the three algo-
rithms on 10- and 40-dimensional synthetic datasets and celestial
spectral dataset, respectively. In this set of experi-ment, we

increase the minsupport from 1×10
−4

 to 3×10
−4

 with an

increment of 0.5×10
−4

. A small minimum support slows down

B Revathi Lavanya MIAENG et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2491-2498

www.ijcsit.com 2496

the performance of the evaluated algorithms. This is because an
increasing number of items satisfy the small minimum support
when the minsupport is decreased; it takes an increased amount
of time to process the large number of items. We also observe
from Graph. 3(a) that the proposed algorithms are superior to
Pfp in processing the low-dimensional dataset. When it comes to
the high-dimensional dataset [see Graph. 3(b) and (c)], FiDoop-
HD behaves optimally and FiDoop shows its downside. These
performance trends are reasonable, because the decomposition
cost of FiDoop will exponentially increase, which in turn
gradually offsets the gain in mining capacity with the
increase of the item-set length. It is evident from these
experimental results that FiDoop-HD improves the
performance of FiDoop in the case of high-dimensional
datasets. This observation is consistent with those drawn
from Graph. 3(d)–(f), which show the running time of the
three stages of FiDoop, FiDoop-HD, and Pfp on celestial
spectral dataset. Although Pfp is seemingly superior to
FiDoop in running time when high-dimensional datasets are
processed, Pfp’s space consumption and the shuffling cost in
the parallel process are higher than those of our solution. As a
result, FiDoop-HD’s performance is better than that of Pfp.
Graph 3(d) and (e) reveals that the running time of the first
and second MapReduce jobs in FiDoop and FiDoop-HD are
insensitive to minimum support. The mappers in FiDoop and
FiDoop-HD have to scan the entire dataset and the reducers
combine the output produced by the mappers; a similar case
applies for the first MapReduce job of Pfp [see Graph. 3(f)].
Interestingly, the running times the third MapReduce job of
our algorithms and the second MapReduce job of Pfp sharply
increase with the decreasing value of minimum support.
A small minimum support gives rise to an increasing number
of k-itemsets to be decomposed by the third MapReduce job.
For the Pfp case, the time spent in grouping and processing
FP-tree goes up as the number of k-itemsets increases.

E. Speedup
We evaluate the speedup performance of Pfp, FiDoop, and

FiDoop-HD by increasing the number of data nodes in the
test Hadoop cluster from 4 to 16 with an increment of 2. The
celestial spectral dataset is applied to drive the speedup
analysis of the three algorithms.

Th results illustrated in Graph4 show that the speedups of
the three algorithms scale linearly when the number of data
nodes increases from 4 to 14. When the num-ber of data
nodes is further increased from 14 to 16, the speedup
improvement marginally slows down. Such a speedup trend
can be attributed to the fact that increasing the num-ber of
data nodes under a fixed input data size inevitably: 1) reduces
the amount of itemsets being handled by each node and 2)
increases communication overhead between mappers and
reducers.

Graph 3. Effect of minimum support on (a) 10 dimensions,
(b) 40 dimensions, (c) celestial spectral dataset, (d) three
stages of FiDoop, (e) three stages of FiDoop-HD, and (f)
three stages of Pfp.

There is a slowdown in speedup improvement and the rea-
son is twofold. First, each node has to load input itemsets
from the HDFS; such input load has more noticeable impacts
on FiDoop-HD than on FiDoop.

Graph 4:Speedup performance

D. Scalability

B Revathi Lavanya MIAENG et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2491-2498

www.ijcsit.com 2497

In this group of experiments, we evaluate the scalability of
FiDoop when the size of input dataset grows dramatically.
Graph 5 shows the running time of FiDoop and FiDoop-HD
when we scale up and process the dimensionality of the series
of D1000W.

Graph 5: Scalability of FiDoop and FiDoop-HD when the size of

input dataset increases. The number of dimensions is set to 10

Graph 5 clearly reveals that the overall execution time of
FiDoop and FiDoop-HD goes up when the input data size is
sharply enlarged.

Graph 5 shows that when the dimension is rel-atively high,
FiDoop-HD is superior to FiDoop in terms of execution time;
More importantly, FiDoop-HD optimizes the performance of
FiDoop for processing high-dimensional data; FiDoop-HD is
superior to FiDoop when itemsets to be decomposed are
large. Pfp is seemingly better than FiDoop when high-
dimensional datasets are processed.

CONCLUSION
To solve the scalability and load balancing,fault tolerence

challenges in the existing mining algorithms, we described a
two step algorithm method for mining of frequent item set
using the Map-Reduce model.Which contain two methods for
efficiently projecting FP-tree with the help of fp growth
algorithm. Fpgrowth seamlessly integrates first two
MapReduce jobs and FiDoop-HD performs the complex third
mapreduce job to accomplish miningof frequent itemsets
because the third MapReduce job plays an important role in
mining frequent items; its mappers independently decompose
item-sets whereas its reducers construct them into small data
sets.

We designed and implemented FiDoop-HD to efficiently
handle high-dimensional data processing. FiDoop-HD
decomposes the M-itemsets into a list of (M− 1)-itemsets,
which are further decomposed into (M − 2)-itemsets to be
unioned into the original (M − 2)-itemsets. This procedure is
repeatedly carried out until the entire decomposition process
is accomplished.

REFERENCES
1. Critian Borgelt “An implementation of the fp growth.department of

language PROCESSING AND KNOWLEDGE ENGINEERING
SCHOOL OF COMPUTER SCIENCE, Otto-von-Guericke-
University of Magde burg Universitatsplatz¨ 2, 39106 Magdeburg,
Germany.

2. C.L. Blake and C.J. Merz. UCI Repository of MachineLearning
Databases. Dept. of Information and Computer Science, University of
California at Irvine, CA, USA 1998

3. Pramudiono and M. Kitsuregawa, “FP-tax: Tree structure based
generalized association rule mining,” inProc. 9th ACM SIGMOD
WorkshopRes. Issues Data Min. Knowl. Disc., Paris, France, 2004, pp.
60–63.

4. R. Agrawal, T. Imielinski,´ and A. Swami, “Mining association rules
between sets of items in large databases,” ACM SIGMOD Rec., vol.
22, no. 2, pp. 207–216, 1993.

5. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo. Fast
Discovery of Association Rules. In: 307– 328

6. Agrawal, T. Imielienski, and A. Swami. Mining Association Rules
between Sets of Items in Large Databases.Proc. Conf. on Management
of Data, 207–216. ACM Press, New York, NY, USA 1993

B Revathi Lavanya MIAENG et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2491-2498

www.ijcsit.com 2498

